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ETERNAL SOLUTIONS TO THE RICCI FLOW

RICHARD S. HAMILTON

1. The result

We consider solutions to the Ricci flow equation

d

518 = T2Ry;
on a manifold X of dimension n. We say the solution is eternal if it is
defined for all time —oco < ¢ < oo. We are interested in solutions which
are complete {which is a way of saying they are also defined for “all” of
space) and which have their Riemannian curvature uniformly bounded for
all space and time. This is a serious restriction; by the work of W. X. Shi
[2] we know then that all the covariant derivatives of the curvature are
bounded.

Examples of eternal solutions which are complete with bounded curva-
ture are provided by solitons. These are solutions which move under a
one-parameter family of diffeomorphisms. If this comes from exponenti-
ating a vector field V;, then we have a soliton when

DY, +DV,=2R,;,

since the metric changes by its Lie derivative along the vector field. When
the vector field is the gradient of a function we say we have a gradient
soliton. If ¥, = D, f, the equation for a gradient soliton is
DD, f =R, It

so the Ricci tensor is the Hessian of a function. In dimensions 2 and 3 for
sure, and-probably in all higher dimensions too, there exists a complete
gradient soliton with bounded curvature and strictly positive curvature
operator which is rotationally symmetric around an origin; it can be found
by solving an ODE.

Eternal solutions with bounded curvature are important because they
occur as models for slowly forming singularities. Our main result is the
following start at a classification.
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1.1. Main theorem. Any complete simply connected eternal solution
to the Ricci flow with uniformly bounded curvature and strictly positive
curvature operator where the scalar curvature R assumes its maximum is
necessarily a gradient soliton.

The proof comes from considering the Harnack inequality for the Ricci
flow (see [1]) where we study a quadratic form which vanishes on solitons
and is weakly positive on any solution. The condition that R assumes its
maximum implies that this quadratic form has a large null space. We can
then use the strong maximum principle to see that the only way this can
happen is when we are on a soliton.

2. The Harnack inequality

In our paper [1] we prove a Harnack inequality for the Ricci flow. There
we only assume the solution exists on 0 < ¢ < T, and we derive an
estimate with terms 1/¢ in it. There is an interesting but simple procedure
for getting rid of them when our solution is eternal. If we have a solution
on a <t < T,wecan replace ¢/ by {—a in the Harnack inequality. Then
if @ — —oo, the expression 1/(¢t — @) — 0 and disappears! That proves
the following result.

2.1. Theorem. Suppose we have a complete eternal solution to the Ricci
fow with uniformly bounded curvature and nonnegative curvature operator.
Let

M

— 1
ab — ARab - fDanR + 2RacbdRcd -R,R

ac” “be
and
Pabc = DaRbc - DbRac
and consider the quadratic form
Z=M W W, + 2P, Vo W+ Ry U Uy
where W isaone-formand U, isatwo-form. Then Z is weakly positive,
so Z >0 for any choice of W and V.

(Note we have just dropped the term %R . from the definition of A,
in [1].)

We shall also need the following computations, which are the basis of
the proof of the Harnack inequality. They come from [1] by dropping all
terms with 1/¢.

2.2. Computation. At a point where

(D,—AW, =0, (D,-A)U, =0,
Da%zo and Da%c:%(RabVVc_Rach)
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we have

P

(Dz -ANZ = 2R paM W, Wy — 2P, /Py,

acd
+ 8R

adcedee Uab I/Vc + 4R
+ [PachVc + Rabcd Ucd][Pabe

W,

aechbedf Uab Ucd
I/VeRabef Uef] :

2.3. Computation. At a point where the quadratic form Z can be
written as a sum of squares of linear forms

M M 2
Z= Z(Xa VV; + Yab Uab) ’
M

the quadratic form

Q= 2R, pgM W Wy = 2P,y Py W W
+ 8RadcePbde Uab VI/C + 4Raechbedf Uab Ucd

is given by

M N N M M N 2
Q= Z(Yac Xc W/;z - YacXc W/;z - 2Yac ch Uab) 4
MN

which is also a sum of squares of linear forms.

3. The idea

We now give the idea of the proof, depending on a lemma which we
prove later. The quadratic form Z is defined on the space of W & U in
A'@A?. If the curvature operator R , ,U ,U_, is strictly positive, then Z
is strictly positive on the subspace A2 C A'@A? where W = 0. Therefore
its null space has dimension at most dimA' = n. If we write U=V AW
so that

U = $(VuW, =V, )

and sum over an orthonormal basis of W ’s

JR
DZWeVAW)=—-—+2D,R-V,+R,VV,
w
and by letting V' =0 we get

ZZ(WeO)zaB—I:.
w

At a point where R assumes its maximum, we will have dR/0¢f =0, and
hence letting ' run through a basis £, we have Z(E,®0) > 0 for each
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a,so Z(E,®0)=0 for each g. Thus Z has a null space of dimension
exactly » at this point.

We then want to argue from the strong maximum principle that at any
earlier time the null space of Z has dimension » at every point. This is
Lemma 4.1. We can then find a smooth tensor L, with L, +L, =0
such that for any W if

bac

U b= LachVc

a

then W & U is the null space of Z . Since the null space of Z satisfies
Macu/;z + Pachab =0
and
Pabc VI/C + Rabcd Ucd =0
we find that
MchabcPabd =0 and Pcde + Rabchabe =0.

We can however do even better. Since the null space of Z cannot contract,
we see from Computations 2 and 3 that the null space of Z must be
contained in the null space of Q. Now W @ U lies in the null space of
Z precisely when
M M
Xa I/V;z*_YabUab:O

for all M, and this happens whenever U, = L,, W, which shows us

a
M
Xc

But then W @ U also lies in the null space of Q, so

M
== Yab Labc :

M N N M M, N
Yac Xc W/;z - YacXc VV;z - 2Yac ch Uab =0

for all M and N. Writing U in terms of L and W and writing X in
terms of L and Y and simplifying algebraically give

M N N M M, N
Y YabLabc -Y, Y Lacb + 2Yac chLabe =0

ec ec ~ab

forall M and N.
Now from the definition of X and Y

MM
Rabcd = Z Yab ch
M

and since the curvature operator is strictly positive the Ya]‘bl can be chosen
as an orthogonal basis for the two-forms. In fact we can take

M MM
Yab =4 Eab
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where Eﬁ is an orthonormal basis for the two-forms, and (/IM)2 are
the eigenvalues of the curvature operator. Then dividing the previous
expression by AMN gives

M N N M M N
Eec EabLabc - EecEabLabc + 2Eac EbcLabe =0.
We now multiply by E;:E:Z and sum over M and N, using

M M
ZEabEcd = %(gacgbd - gadgbc)
M
and simplifying to conclude that

gpeLrsq - gqeLrsp - grequs - gsequr
+ 8 Lipre = 8 Lipse = 8psLigre + 8prlyse =0

s pre qr~pse ps qre gse

for any choice of p, g, 7, s, and e.
3.1. Lemma. There exists a V, such that

Labc = %(V;ngc - Véygac) .

Proof. This follows algebraically from the above relation, and is in fact
equivalent to it. To see this, take the trace on g and s. This gives
(n— 2)Lpre - Lrep - Lepr = ngre - Xrgpe

when X b = L paa is the trace. Now we cyclically permute p, r, and e
and sum to conclude that

(I’l - 4)(Lpre + Lrep + Lepr)

=0
and so
Lpre + Lrep + Lepr = O

at least when n # 4. It is also true when n = 4, as we see differently.
We only need to check it for p, r, e all distinct, so take p=1, g =2,
r =3, s =e =4 in the original formula and get L,,; = 0. Then surely
L)+ L,y3; + Ly, =0 also, and this is good enough.

Now if we substitute this in the formula above for the trace, we get

(n— l)Lpre = ngre - Xrgpe
which gives
Lpre = %(V;Jgre - V;gpe)

for v, = X , - This proves the lemma. q.e.d.
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The lemma produces our desired smooth vector field along which the
solution is supposed to flow. Substituting back in our formulas for the null
space of Z gives

Mbc+V;1Pa =0 and Pabc‘: abch;i'

Now if we differentiate the second expression and use the first and the
relations

M, =D,P, +R, R; and DR, =P,

a” abc
(which hold on any Riemannian manifold) we find that everything simpli-
fies to

abcd (D V Rbd) 0.

Now we let
Tab = Da V}J - ‘Rab
and observe that R, T, =0.
3.2. Lemma. The tensor T, is symmetric.
Proof. Let T, =S, + A, be its decomposition into symmetric and

antisymmetric parts. Then
RipcaTra = RapeaSoa + Rapeadpa

is also such a decomposition. Therefore R, ,4,, = 0. Using the Bianchi
identity we find that this is equivalent to R, ,4., = 0 and since the
curvature operator is strictly positive we must have 4, = 0, so T, is
symmetric.

In dimension three we could already conclude that 7, = O from
R,caTpy = 0. For in a basis where T, is diagonal we get the equations

Rip12Tyy + Ry33T53, =0,
Rt + R2323T33 =0,
Ry33T + Ryyp Ty = 0
and the coeflicient matrix has determinant
2R3 pR 313Ry353 > 0
so the only solution is
T, =15, =T;;=0.
In higher dimensions this does not suffice, and we have to work harder. A
lot harder.

First note that
DV,=R,+T,=D,J,
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so that when the manifold is simply connected we can solve globally for a
function f with

D, f=V,.
We then have the equations
(1) RipeaTpg =0,
(2) DDy f =R+ Ty,
(3) Pope = RapeaDaf >
(4) Mbc+Daf'Pabc:0

and we now work from here. Differentiate (2) and switch derivatives and
use (3) to show that

(5) DaTbc:DbTac

so that 7, is a Codazzi tensor. Now apply the operator (D, —A) to (2)
and let

(6) (D,—A)f=h
and use the commutation formula
D, - A)Danf = Dan(Dt —A)f+ 2RacbchDdf
and
(Dz - A)Rab = 2RacbdRcd
to compute that
(7N (D,~ANT,, =D,D,h.
If we differentiate (5) again to get
DanTcd = DaDchd
and switch D, and D, we have

D,D.T,,—D,D,T,, =R

a’cd

T, +R,,.T

abce abde " ce

and then if we cyclically permute a, &, ¢ and sum, and use the Bianchi
identity on R we get

RyieTe + Rpyo T, + R

bede ” ae cade

abce ’
7,,=0.
If we then trace on @ and d we get

(8) R, T,=R,T,

be * ce

which shows R, and T, commute.
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Going back to (7), by the commutator formula

(D,-AMD, T, =D,(D,-AT, . +2R,,,.D,T, +2R,,; DT,
and this gives
(Dt - A)DaTbc = DanDch + 2RadbeDche + 2RadceDb Tde .

Now switch @ and b and subtract. We then have

R,,.,Dh+2R,, D,T,, —2R,, DT, =0.

abcd adce bdce™a

Going back and differentiating (1) gives

Ry Dy Tyo + Ty,D,R,,., = 0

adce adce

and doing this on the other term also shows that

RabcdDdh = 2Tde(DbR - DaRbdce)

adce

and by the second Bianchi identity
(9) Rpealalt = 214, D4R

abce *
Now from [1] we recall the evolution formulas
(D, =MR,,, = 2R, chedf — 2R, fRdec f
+2R,, R 2R, R

bedf — aedf ™ becf ?
(Dl - A)Pabc = 2RadbePdec + 2Radcedee
+ 2Ry cePade = 2R3 DyR e »

(D, -MM,, =2R, , ;M +2R,ID.P,,, + D Py}
+2P P, — 4P, P, .+ 2R 4R R

acd acd ce” tadbe *

When we apply the evolution operator (D, — A) to formula (3) there are
many cancellations, after which we just recover (%), so we obtain no new
information. But if we apply (D, —A) to (4) and use the given identities,
then after many cancellations we are left with one new term! Namely we
get

(10) Rabcd Tbe Tde =0
which looks just like (1) but is in fact much better since the matrix T,
now is squared.

3.3. Lemma. The tensor T, =0.
Proof. Choose a basis where T, is diagonal. Then

Rabcd Tbe Tde =0
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implies that for a=c=1

2 2 2
RiyTy + Ry33 155 +-+Ry,,,T,,=0
and since R, , >0, R;,>0,---, R, >0 weget T,, =0, T3, =

0,---, T, =0. Similarly all the diagonal entries are zero. q.e.d.
We now have D V, = R, , so the metric is in fact a Ricci soliton.

4. The strong maximum principle

We now prove the lemma we need to make the previous argument work.

4.1. Lemma. If the quadratic form Z has null space of dimension
strictly less than n at some point at t = 0, then it has rank strictly less
than n at every point for any time t > 0.

Proof. This will be a consequence of the usual strong maximum prin-
ciple, which assures us that if we have a function F > 0 which solves

(D,—A)F =0

for > 0 and if we have F > 0 at some point when ¢ = 0, then we have
F > 0 everywhere as soon as ¢t > 0.

Suppose now that Z has null space of dimension strictly less than n
at some point X 0 at t=0. By picking X % in general position we may
assume the dimension of the null space is constant in a neighborhood of
X°. We can then choose a smooth vector field Y, with support in this
neighborhood so that Y, # 0 at the point X  but Y, is orthogonal to
the null space of Z, in the sense that if Z vanishes on W, & U,  then
Y, W = 0. We then define a matrix by

Fab = Ya Yb
at t =0, and allow F, to evolve by the heat equation
(D,—AF, =0.

Since F, >0 as a matrix at ¢ =0, it will remain so for ¢ > 0 by the
maximum principle. Let F = F, be the trace. Then F >0 at the point

X%atr=0 , 80 F >0 everywhere as soon as ¢ > 0. But this means F,
has rank at least one.

The quadratic form F W W, vanishes on the null space of Z, so
by multiplying F,, by & > 0 sufficiently small we can arrange things so
that Z > F,, W W, at t = 0. Now we claim that this inequality will be
preserved for ¢ > 0. Whereupon we are done; inasmuchas R, ,U U, >
0 for U, #0,s0if W & U, liesin the null space of Z we must have
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W, # 0, which shows the dimension of the null space of Z cannot exceed
the dimension of the null space of F,

Note that R, F,, >0 since F; > O and R, has positive sectional
curvature. Therefore the followmg result will suffice.

4.2. Theorem. Let F, be uniformly bounded with F,, >0 and satisfy

(D, = A)F,, < 2R, F.y-

Suppose Z > F,, W W, when t=0. Then this remains true for t > 0.
Proof. We modify the Harnack expression Z by letting

Z= Mab VV;:% +2P abc Uab VI/C + Rabcd Uab Ucd
where we let

Mab_M —Fy + 08,
Rabcd = Rabcd + %W(gacgbd - gadgbc)

where ¢ and y are functions we will choose later and then let go to zero.
We compute the modifications to the evolution of Z in Computation 2.2
from the introduction of F,,, ¢ and w . This gives us the following result,
using C as a constant to bound |Rm|, |DRm]|, |D2Rm| and |F |, and
we assume ¢ < 1.
4.3. Lemma. We have
(Dt - A)Z = 2Racbd
adce” dbe™ ab aecf “bedf ~ab ™~ cd
+8R , P UW+4R R, U, U
[Pach + Rabcd cd][ abeu/; + Raberef]

(D, = A)Fy = 2Ry F, W, W,
+ (D, - Mgl W' + (DU - E

M W, W, —2P, P, W, W,

acd

where the ervor E is bounded by
E<Clp+ W+ Cy|U)
at a point where
(D,—MW, =0, (D,-MU, =0,
Da% =0 and Danc = %(Rabu/; - Rac%) :
Proof. Few new terms can occur since we do not have to worry about
space derivatives falling on W, or w. The only trick is to bound the

cross-term , ,
Cy|UIIW| < Cy|UI" + Cy|W|

which is obvious.
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Now to make the argument work we need to have

(D,—A)p>C(p+y) and D,y >Cy.

This is easy to achieve. We take y = Se* with 6 small and 4 > C.

Then we take ¢ = de'f (x) where f is the function constructed with
f(x) — oo as x — oo but all the covariant derivatives of f bounded
from Lemma 5.1 in [1], and A4 is large compared to C before and to C
bounding Af. We then have ¥ > J > 0 and ¢ — oo when X — oc.
Since M, , F,, and P ' be are bounded while R, , is positive it is clear
that Z is strictly positive outs1de of a compact set. If Z ever becomes
zero, there will be a first time {° this happens, and a point X° and an

eigenvector Wa0 and Ufb where Z is zero. Extend W, and U, to

sections with W = W;O and U, = =0 o at (X X°, /%) and so that

(D,~A)W,=0, (D,-A)U, =0,
DaWb:() and Danc—__%(RabW/;-Rach)

at (X o tO). Then Computation 2.3 shows us that (D, — A)Z >0 at
(X O, tO). However DIZ < 0 and AZ > 0 there, so we have a contra-

diction. Therefore Z can never become zero. We now let § — 0 in
the choice of ¢ and y (note A4 remains the same) and we recover the
theorem.
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